Cross Slope Typical Section Details & Constructability

Richard Hewitt, P.E.
FDOT State Construction Pavement Engineer

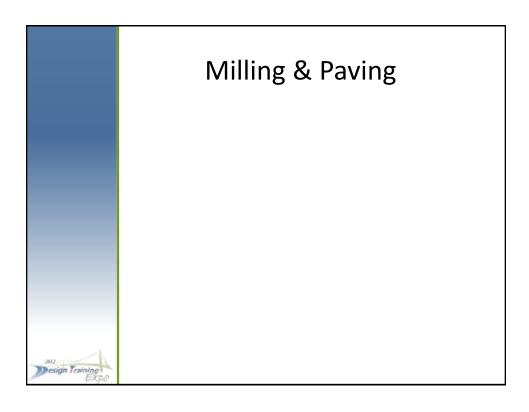
Kevin Price Quality Control Manager - DAB Constructors, Inc.

> Mike Morgan, P.E. Project Manager - AJAX Paving, Inc.

Cross Slope Training Outline

- Milling & Paving Equipment
 - Information Contractors Need
- Milling & Paving Scenarios
 - Project Typical Sections
 - Check List of Typical Section details
 - What Contractors Need
 - What Can Create Confusion
 - Example Typical Sections
 - The Good, The Bad & The Ugly

A Few Words


- •Cover what's needed from contractor perspective
- Covers most situations
 - The "Typical Typicals"
- •There are other Design & Construction Challenges
 - However, today we'll discuss Typical Section Details needed for construction

Thanks

- •ACAF Jim Warren
- ACAF Contractors
 - DAB Constructors- Kevin Price
 - AJAX Paving- Mike Morgan
 - C.W. Roberts- Parks Allman & Andy Bailey
 - Middlesex- Joe Meier & Bob Garofalo
- State Design Office
 - Frank Sullivan
 - · Manny Uwaibi
- State Materials Office
 - Charles Holzschuher
 - Kyle Kroodsma
 - Stacy Scott
 - Greg Sholar
 - Clay Whittaker

Milling Machine

- •Two Controls to Set one for each side
 - Set milling depth on each side OR
 - Set depth at control point (one side) & cross slope from that point

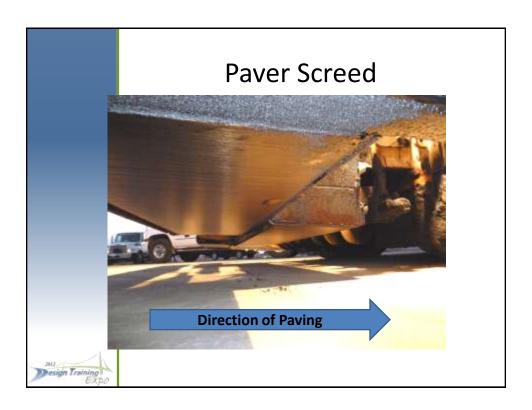
Milling Machine

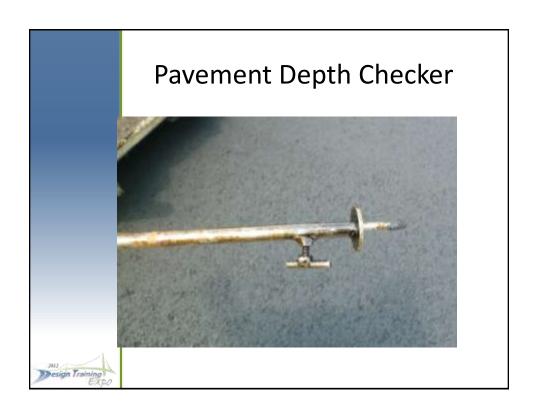
- •Typical Section must either provide:
 - One Constant Milling Depth for the lane
 - Set both milling controls to same depth
 - Don't list it as "Average"
 - Depth on One Side & Cross Slope
 - Set depth on one side of lane & slope to the other side of lane
 - This requires a milling control point on typical section
 - So contractor knows which control is set to depth (other set to slope)



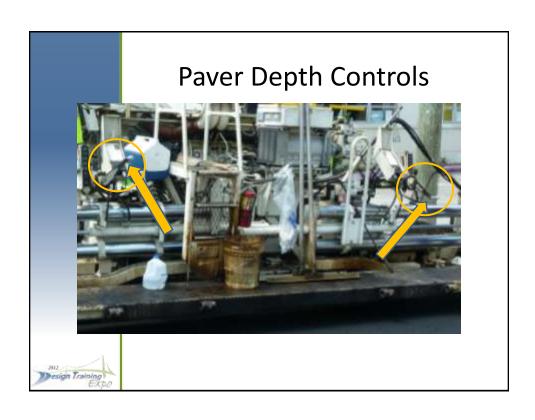
Milling Machine

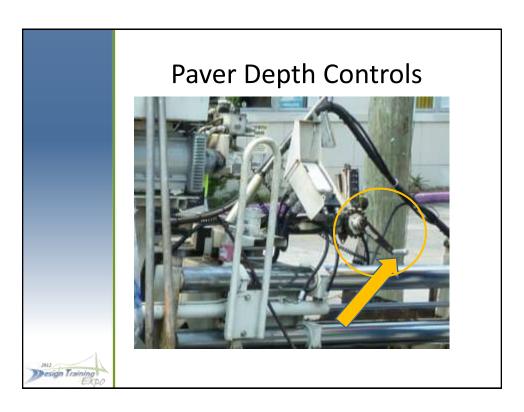
- •Most milling is done with two passes per lane
 - Typically 6ft to 7ft milling drum width





Paving Equipment


- •8-10 ft wide screed
 - •Typical (& preferred) screed width is 10 ft
- •Extendable screeds allow paving to 20ft width



Joint Matcher

Paving Equipment

- •Controls
 - Depth is set manually by paving crew
 - Paver has electronic cross slope control
 - Ski pole & other electronics help provide smooth longitudinal profile

Paving Equipment

- •Typical Section must either provide:
 - One Uniform Thickness for the lane
 - Set same thickness on each side of paver
 - Don't list it as "Average"
 - Depth on One Side & the Cross Slope
 - Set depth on one side and slope
 - Also requires a profile grade line on the typical section
 - minimum of one per set of adjoining lanes

Milling & Paving

- Accuracy
 - Provide % Slopes to nearest 0.1%
 - Most Slope Controls only go to tenths
 - On typical section list slope as 1.8% (or 0.018)
 - Provide Depths to nearest ¼"
 - More precise plan values will be modified to tenths by project personnel

Four "Tools in the Tool Box"

Milling

- 1. Constant Depth
 - Slope: matches existing variable
- 2. Constant Slope
 - Depth: depends on existing variable

Paving

- 3. Constant Thickness Standard Paving
 - Slope: matches slope of surface being paved on
- 4. Constant Slope overbuild
- Thickness: depends on surface being paved on Project scenarios are a combination of the 4 options

Typical Section Scenarios

Match Existing

- No Cross Slope Correction
- 1. Mill for Depth, Pave Constant Thickness

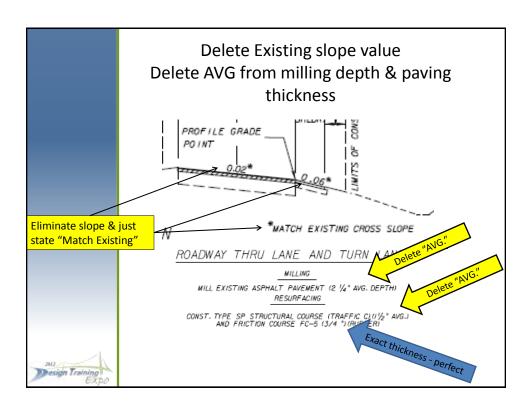
Cross Slope Modification

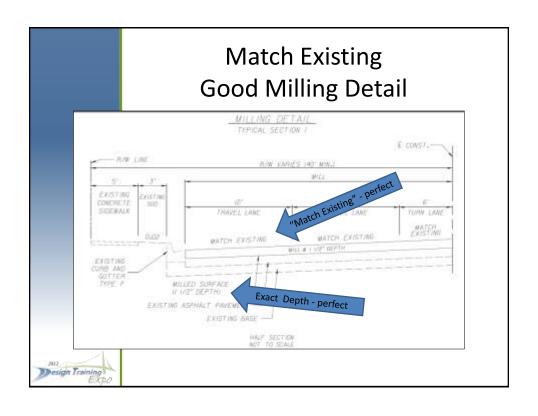
- 2. Mill for Slope, Pave Constant Thickness Structural / Friction
- 3. Mill for Depth, Correct Slope with Overbuild, Pave Constant Thickness Structural / Friction
- 4. Mill for Slope, Finish Correcting Slope with Overbuild, Pave Constant Thickness Structural / Friction

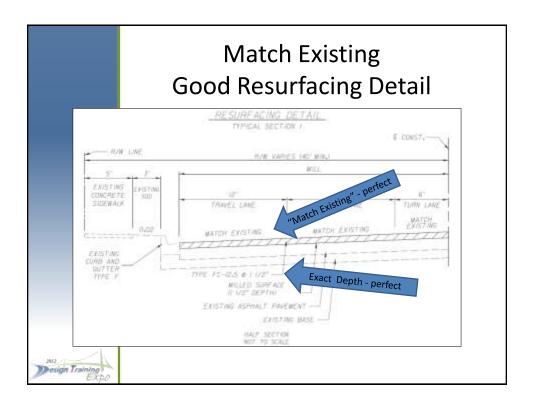
Match Existing Typical Section Check List

- •Mill for Depth
- Pave Constant Thickness

Match Existing Typical Section Check List


•Mill for Depth


- Provide Single, Uniform Milling Depth
- Not an "Average", list it as exact


Pave Constant Thickness

- Provide Uniform Thickness for each course
- Not an "Average", list it as exact
- Don't include a Design (or target) Slope
 - Can either match existing or mill & pave to a design slope
 - Contractor can't do both
- •If "existing slope" is shown:
 - Clearly identify it as "existing slope"
 - Otherwise it can be confused as a design slope
 - Recommend leaving existing slope off typical section
 - If desired add a plan note stating approx. slope range

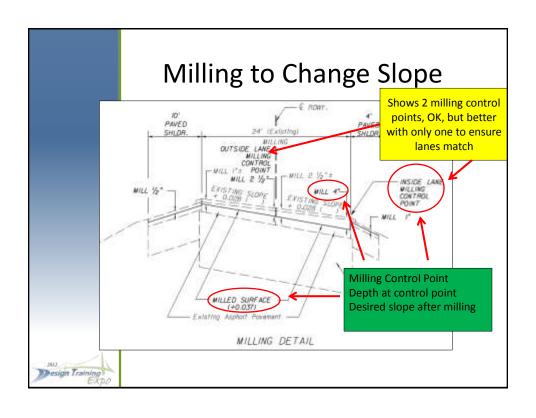
Cross Slope Modifications

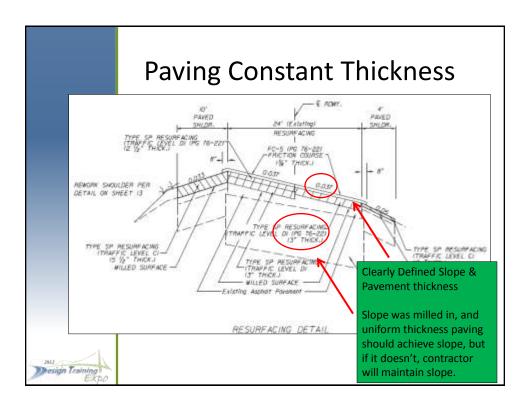
- Next three scenarios
 - Options for cross slope modification
- •The "Match Existing" recommendation regarding "NOT providing a slope when paving constant thickness", changes here

Cross Slope Modifications

- •End goal is the design slope
- •Slope achieved by:
 - Milling for slope
 - Paving overbuild
 - Both
- Minor slope adjustments ARE made with "constant thickness" asphalt
 - Therefore, provide exact constant thickness <u>AND</u> design cross slope shown on Typical Section
 - Differs from match existing

Mill Slope Pave Constant Thickness


- Cross Slope Modification
 - Mill for Slope,
 - Pave Constant Thickness Structural & Friction



Typical Section Check List Mill Slope, Pave Constant Thickness

- •Mill for Slope
 - Provide Exact Milling Depth on one side of lane
 - Provide Milling Control Point on same side of lane
 - Provide Exact Desired Cross Slope No +/-
 - Spec provides allowable construction tolerances
 - Adjacent lanes can just show slope, don't need control point on each lane
- Pave Constant Thickness
 - Provide Uniform Thickness for each Course
 - Provide Design Slope see explanation on "Cross Slope Modifications" slide
- Don't list Average (Depths or Thicknesses)
- •If desired, add plan note with "Avg Milling Depth"

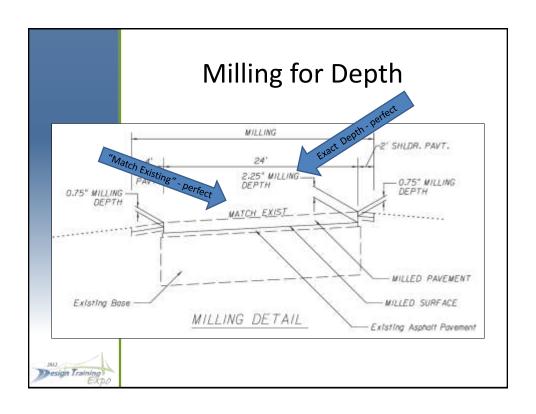
Mill Depth Correct Slope with Overbuild

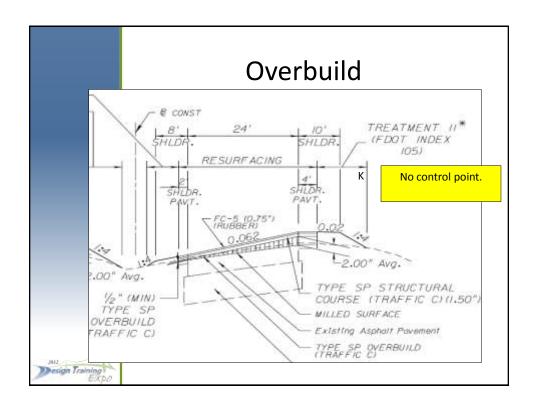
- Cross Slope Modification
 - Mill for Depth
 - Correct Slope with Overbuild
 - Pave Constant Thickness Structural / Friction

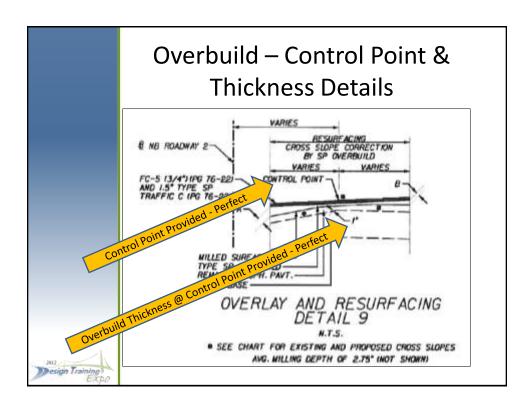
Mill Depth Correct Slope with Overbuild

•Mill for Depth

- Provide Single, Uniform Milling Depth
 - Not an "Average", list it as exact


Pave Slope with Overbuild


- Provide Desired Cross Slope for Overbuild
- Provide a Profile Grade Line/Control Point & Thickness at that point
 - Adjacent lanes can just show slope, don't need control point on each lane
- · Don't specify mixes or min and max thicknesses, let Spec dictate mix used
- Eliminate Existing Slope, or if listed, identify it is as existing
- For each Lane, provide Table of Greatest Overbuild Thicknesses (for each 500ft section of pavement)


Pave Constant Thickness

- · Provide Single, Uniform Paving Thickness
 - Not an "Average", list it as exact
- Provide Design Slope see explanation on "Cross Slope Modification" slide

Overbuild

- AVG Thickness for a Typical Section
 - Not useful for setting up paver
- •For paver set up, provide:
 - Control Point
 - Exact thickness at control point
 - Cross Slope
- •Average Thickness Table at a regular frequency is useful
 - Helps contractor plan the work
 - One pass, two passes, etc.

Overbuild Table

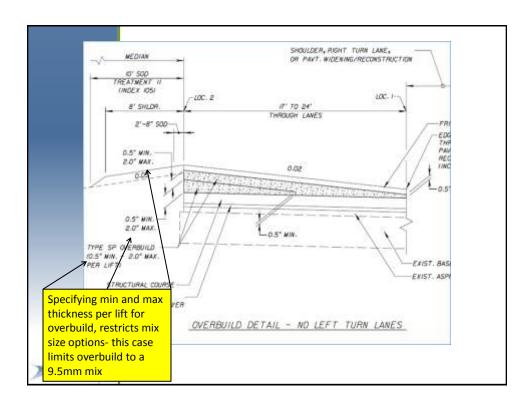
STA.	SIDE	LANES			AVG.	AREA	TOTAL SP
		EXIST. SLOPE	PROP. SLOPE	MAX. HT	NT. OF OVERBUILD TIW.	OVERBUILD (ST)	OVERBUILD ITW
1475+00	LT	-0.0/8	-0.020	0.00	0.43	118-28	3.0
1475+50	LT	-0.0/5	-0.020	0.43	1.03	118.28	5.0
1476+00	LT	-0.0%	-0.020	1.03	7.03	118.28	5.0
-	-	_	-	_		-	-
-		_	-	_			-
M77+20	LT	-0.0/3	-0.020	1.75	1.12	47.30	2.9
1478+00	LT	-0.0/4	-0.020	1.51	1.00	109.24	10.5
1478+50	LT	-0.0/2	-0.020	1.99	1.24	18.28	8.1
1479+00	LT	-0.00	-0.020	2.47	1.48	18.28	9.7
1479+50	LT	-0.0/3	-0.020	1.87	1.18	(18.29	7.7
1480+00	L7	-0.0W	-0.020	2.25	1.35	#9.28	8.9
1480+50	LT	-0.000	-0.020	2.59	1.54	85.80	10.0
1481+00	LT	-0.0W	-0.020	2.35	1.42	88.28	9.3
/48/+50	LT	-0.007	-0.020	3.31	1.90	18.25	12.4
1481+75	LT	-0.006	-0.020	3.67	2.08	59./4	6.8
1462+00	LT	-0.003	-0.020		2.44	59.14	8.0
1462+25	LT	-0.004	-0.08	3.47	7.98	59.14	6.5
1482+50	LT	-0.007	-0.03	1.57	1.03	59.14	3.4
1483+00	LT	-0.002	-0.004	0.52	0.5/	118.28	3.3
1483+50	1.7	0.005	0.005	0.00	0.25	119.28	1.6
1484+00	LT	0.002	0.0/5	-0.73	0.00	1/8.28	0.0
1484+50	LT	0.028	0.024	0.98	0.74	1/8.28	4.8
1485+00	LT	0.032	0.033	0.00	0.25	10.28	1.5
1465+50	LT	0.043	0.042	0.04	0.30	168-86	1.9
0.000	11111	1000	100	VESTSTILL.	1977	THISTOCK	/44.5

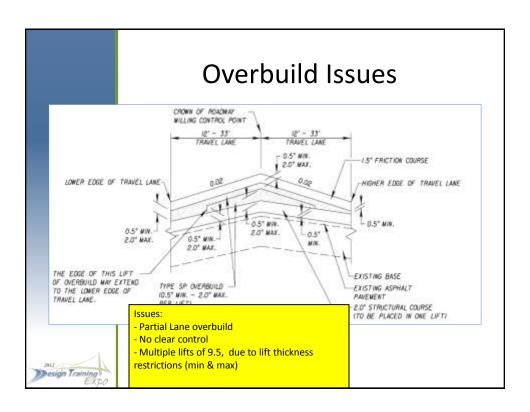
A table of average heights at given stations is preferred over an average thickness for the typical section

Mill for Slope Correct Slope with Overbuild

Mill for Slope

- Provide Exact Milling Depth on one side of lane
- · Provide Milling Control Point on same side of lane
 - Adjacent lanes can just show slope, don't need control point on each lane
- Provide Exact Target Cross Slope
 - Spec provides allowable construction tolerances


Pave Slope with Overbuild


- Provide Target Cross Slope for Overbuild
- Provide a Profile Grade Line/Control Point & Thickness at that point
 - Adjacent lanes can just show slope, don't need control point on each lane
- Don't specify mixes or min and max thicknesses, let Spec dictate
- Eliminate Existing Slope, or if listed, identify it as existing
- For each Lane, provide Table of Greatest Overbuild Thicknesses (per 500ft)

Pave Constant Thickness

- Provide Single, Uniform Paving Thickness
 - Not an "Average", list it as exact
- Provide Design Slope see explanation on "Cross Slope Modification" slide

Keep it Simple

- •Keep it simple,
 - "Someone has to build this -----!"
- Design Intent must be clearly communicated to the field personnel
- •If not, likely it will not be built as designed

Keep it Simple

- Too many typical sections aren't good either
 - Difficult to construct & transition between each typical section
 - Remember we are trying to pave a smooth road
 - Keep number of scenarios to a minimum
 - Rule of Thumb: One typical section for each scenario
 - Need typical sections for accel/decel lanes
 - if there are different milling & paving scenarios

Constructability

- Make required changes with minimum number of Typical Sections
- •Too many typical sections can adversely affect smoothness
- Consistency & Uniformity
 - Keep a smooth constant flow when paving
 - Keep # of grade or slope changes reasonable
 - Changing too often doesn't lead to smooth ride
- •Challenge is to balance smoothness & cross slope
 - Longer transition lengths are key to providing a smooth pavement

Average – Depth or Thickness

- They are "Nice to know" info
- Can't set milling & paving equipment to an Average Depth or Average Thickness
- Provide exact depths, and/or exact slopes
- Provide Milling Control Point/Profile Grade Line as needed
 - Minimum of one per set of adjoining lanes

Milling Control Point / Profile Grade Line

- Dictates controlling point of roadway cross section
- •Critical when slope corrections are made
- Need one control point per set of adjoining lanes
 - Regardless of direction of traffic
 - ex 2 lane roadway one control point

Milling Control Point / Profile Grade Line

- •Normally don't need more than one control point per set of adjoining lanes
 - Can have more, ex. one for each lane
 - Be careful if you do this
 - It isn't typical
 - Can get you into trouble with final surface of lanes not matching (big problem)

Overbuild

- •Typically used when unable to correct slope by milling
- •If possible:
 - Keep overbuild low in pavement structure
 - Keep from making overbuild last lift prior to friction course
 - Try to place at least one structural lift on top of overbuild
 - Why?
 - Typically overbuild has variable density
 - Placing it lower improves ride smoothness
 - Constant thickness lifts typically perform better than overbuild

Overbuild

- •Try not to eliminate any options for contractor
- •Don't specify min & max lift thickness
 - Let Specs dictate mix size & lift thicknesses
- Focus on overall thickness & slope
- •Consider MOT impacts, can only pave one lane at a time

Conflicting or Unclear Information

- •Leads to confusion & arguments
 - Intent may be clear to designer
 - But it needs to be clear to project staff
- •Can Increase Project Time & Cost
- •Leads to As-Built Cross Slope being different from Design Slope

Future

- •Use of "Cross Slope van" data
- •LiDar
- Other technologies
- •CIM
- •???

Questions & Discussion

- •Contact Info:
 - Rich Hewitt
 - (386) 943-5305 office
 - richard.hewitt@dot.state.fl.us

